If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x+16x^2=84
We move all terms to the left:
10x+16x^2-(84)=0
a = 16; b = 10; c = -84;
Δ = b2-4ac
Δ = 102-4·16·(-84)
Δ = 5476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5476}=74$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-74}{2*16}=\frac{-84}{32} =-2+5/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+74}{2*16}=\frac{64}{32} =2 $
| 6-3×=5x-10x+10 | | 9x-9=5x-7+4x-2 | | 8u=6u−8 | | 5+6x=8x-7 | | 2(2x+5)-2(3x-5=2x-5 | | 139.716=3.6(6.05-4.2v) | | 5n-5=2n+8 | | w+2/3=61/2 | | 3x-5(7x-3)=47 | | 18/14=b+4/b | | Y=20/3x | | 30+8n=-5(-6n-6) | | Y=(7x-1)(6x-1) | | 2(a-5)-4(2a-1)=18 | | 12=-r-11 | | 11-3x=9x+5 | | 10x-12=2×(5x-2) | | 10x-23+5x=2x+33 | | 2x-4x5=x+2x10 | | 2(x-8)=3(4+x) | | 10x-23=5x | | 11x-3x=9x+5 | | 12x+3=3(14x) | | 3/5+2x=3x-x+ | | 2x+15=68-x | | -100-x=50 | | 6=4+k/9 | | 28=9.6a | | (2x-3)(x-1)=-7x-11 | | (2x-3)(x-1)=-7x | | −5(−7+3x)=−100 | | 3/4x-4=7/2 |